PART A - GRAPH THEORY - 20 MARKS

1. Matrices in Graph Theory (10 marks)

This question is based on the following graph G :

2
a) Fill out the adjacency matrix for the graph G :

Γ	0	1	2	3
0	0	1	0	2
1	1	0	1	0
2	1	0	0	0
3	0	0	1	0

b) Fill out the following matrix A which is defined as follows:
$A(i, j)=$ number of walks of length 2 from vertex i to vertex j in the graph G.

Γ	0	1	2	3
0	1	0	3	0
1	1	1	0	2
2	0	1	0	2
3	1	0	0	0

This can be derived by squaring the adjacency matrix.

2. Circuits (6 marks)

This question is based on the following graph G (the edge numbers are edge names):

a) Give an Euler circuit for G (listing the vertices and edges as they are traversed) or explain why this cannot be done.

Starting at A, there are 8 Euler circuits as each of the cycles ADF,DG, GEBCH can be traversed either clockwise or counter clockwise. The one that is fully clockwise is: A2D5G6E7B8C9H10G4D3F1A
b) Give a Hamiltonian circuit for G (listing the vertices and edges as they are traversed) or explain why this cannot be done.

This graph consists of 3 simple circuits: ADF, DG, GEBCH with are connected at vertices D and G. Any circuit for the entire graph (i.e. including all the vertices) will need to traverse both D and G more than twice in order to include both the ADF and the GEBCH circuits. Therefore none of the circuits which include all the vertices will be Hanmiltonian circuits.
3. Minimum Spanning Tree (4 marks)

For the weighted graph G underneath, where the edge numbers are weights:

Draw a minimum spanning tree (draw the edges you are keeping with their weights).

PART B - REGULAR EXPRESSIONS AND FINITE STATE AUTOMATA - 40 MARKS

1. Operations on Languages (10 marks)

Define the following two languages of the alphabet $\Sigma=\{a, b\}$:
$\mathrm{L}_{1}=\{\mathrm{a}, \mathrm{aa}, \mathrm{ab}\}$
$\mathrm{L}_{2}=\{\mathrm{b}, \mathrm{bb}, \mathrm{ab}\}$
a) List all the elements of $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$
$\{\mathrm{ab} \longrightarrow\}$
b) List all the elements of $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$
$\{\mathrm{a}, \mathrm{aa}, \mathrm{ab}, \mathrm{b}, \mathrm{bb}$ \}
c) List all the elements of $\mathrm{L}_{1} \times \mathrm{L}_{2}$
$\{(a, b),(a, b b),(a, a b),(a a, b),(a a, b b),(a a, a b),(a b, b),(a b, b b),(a b, a b)$
d) List all the elements of $L_{1} L_{2}$
$\{$ ab, abb, aab, aabb, aaab, abbb, abab

2. Regular Expression (10 marks)

Write a regular expression to match all integers in a new programming language. Integers are defined as follows:

- An integer can be in base ten (decimal), base sixteen (hex) of base eight (octal).
- A decimal integer is either the single digit 0 or a sequence of one or more digits between 0 and 9 such that the leading digit is not a 0 .
- A hex number starts with the string " 0 x " which is then followed by one or more digits between 0 and 9 or letters between A and F.
- An octal number starts with the single digit 0 which is then followed by one or more digits between 0 and 7.
You do not need to simplify your regular expression
$\left(0 \mid[1-9][0-9]^{*}\right)|(0 x[0-9, A-F]+)|(0[0-7]+)$

3. Finite State Automata (20 Marks)
a) Give a regular expression for each of the following finite state automata. Make these regular expressions as simple as possible.

In the next two questions the simplest possible automaton refers to an automaton with as few states as possible.
b) Draw the simplest possible NFA (non-deterministic finite state automaton) on an input alphabet $\mathrm{I}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ which recognizes the following regular expression: $(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{abc}(\mathrm{b} \mid \mathrm{c})^{*}$

c) Draw the simplest possible DFA (deterministic finite state automaton) on an input alphabet $\mathrm{I}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ which recognizes the following regular expression: $(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{abc}(\mathrm{b} \mid \mathrm{c})^{*}$

